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The lattice-gas approach is generalized to incorporate features of the 
configurational problem posed by the randomly hydrogen-bonded "gel" 
model for liquid water. Because it possesses sublattices characterized by 
tetrahedral angles associated with triads of sites, a body-centered cubic 
(bcc) lattice is used. Each water molecule is allowed 12 orientations with 
respect to the bcc lattice. When two nearest neighbors have relative orien- 
tations which permit hydrogen bonding, they are assigned a hydrogen bond 
energy. When hydrogen bonding is not permitted the pair is assigned one 
of two weaker interaction energies. Like the simple lattice gas, this model 
displays a "vapor- l iquid"  phase transition. The critical site density proves 
to be less than �89 The model should also exhibit a transition to a solid phase 
as a result of the possibility of complete hydrogen bonding associated with 
exclusive occupation of one sublattice. Excellent agreement is obtained 
with the observed temperature dependence of the second virial coefficient. 
The agreement in the case of the third virial coefficient is poor, however. 
The mean field approximation is shown to be inadequate for quantitative 
description of the vapor-liquid transition and the properties of the liquid 
phase. 
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1.  I N T R O D U C T I O N  

The lattice-gas model was used by Lee and Yang ~1) as an aid to comprehension 
of the liquid-gas phase transition and its critical point. These authors demon- 
strated the mathematical equivalence of this model and the magnetic Ising 
model, an equivalence which suggests a similarity between real magnetic 
transitions and real gas-liquid transitions. The putative similarity of these and 
other critical phenomena has contributed significantly to our understanding 
and classification of critical behavior. 

Unfortunately, the lattice-gas model appears not to be a very good 
model for calculation of many quantitative features of gas-liquid behavior 
of simple fluids such as argon. Much of this unsuitability can be attributed 
to the existence in the model of preferred directions, as well as distances, for 
the positions of molecules which may reside in the first coordination shell 
around a given molecule. 

It seems reasonable to anticipate that the lattice-gas model should prove 
more appropriate for treatment of the gas-liquid transition in fluids composed 
of molecules that interact through strongly directional forces. An example 
of such a substance is water, for which the notion of the hydrogen bond has 
proven extremely useful in qualitative discussion. 

These observations naturally suggest the exploration of a lattice-gas 
model with internal degrees of freedom as a basis for more quantitative 
discussion of water (and other "associated" liquids). As we shall see, this 
model can be provided with at least two breakable symmetries, one of which 
corresponds to the gas-liquid transition, the other to a liquid-solid transition. 

In another article (2~ we have presented a discussion of the physical essence 
of the phase transitions which bound and define the liquid state of water. 
This discussion of the melting of ice and the condensation of water vapor has 
led to an interpretation of the nature of liquid water which attributes to the 
latter at any instant the "structure" of a randomly polymerized (via hydrogen 
bonds), three-dimensional network of macroscopic extent (in high-polymer 
parlance, a "gel"). The detailed structure of this "gel" is constantly and 
rapidly changing by virtue of the very rapid breaking and forming of hydrogen 
bonds (hydrogen bond lifetime ,~ 10 -1~ sec). 

In this "gel"  the often postulated tetrahedral "structure" of liquid water 
is presumably present in the limited sense that the equilibrium angle between 
any two hydrogen bonds emanating from a common participant water 
molecule is probably not greatly different from the tetrahedral angle. This 
tetrahedral character is also expected to be present in the somewhat fuller 
sense that some of the water molecules participate simultaneously in four 
(nearly tetrahedrally disposed) hydrogen bonds. Others, however, participate 
in only three, two, or one hydrogen bonds. 
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The proposition that a macroscopic "ge l "  phase (liquid) is related to 
the corresponding depolymerized '~ sol" phase (vapor) via a first-order phase 
transition has been posed (long ago) by Stockmayer, (3~ applied to water in 
Ref. 2 and clarified in a more recent article. (4~ 

One way of characterizing the difference between a "ge l"  structure and 
a crystalline structure is to note that such ring closures as exist in the "ge l "  
are random in both location and size, whereas the ring closures in the crystal 
are highly organized in a fashion that permits an especially large number of 
rings of a particular size (hexagonal rings in the case of ice). That the breakup 
of a structure composed of ordered, interconnected small rings (crystal) to 
yield a "ge l "  structure (liquid) is highly cooperative and should be a first- 
order phase transition, even if unaccompanied by the breakup of the resulting 
"ge l "  structure, is illustrated in Ref. 2. 

TEat these two phase transitions, identified with boiling and melting, 
would be expected under conditions of sufficiently low pressure to coalesce 
to one transition, identified with sublimation, is also argued in Ref. 2. 

The interpretation in Ref. 2 of melting as a randomization of the sizes 
and interconnections of rings of interaction (at the price of a small net loss 
of total bonding) supports the "ge l "  model of the liquid and suggests that 
Stockmayer's observation of the similarity between sol-gel and vapor-liquid 
transitions should be viewed as an identification of more than an analogy. 
This latter proposition is justified in Ref. 4. 

Now t h e "  vapor-liquid" transition afforded by t h e "  lattice-gas" version 
of the Ising model can also be interpreted as a gelation, as can the ferromag- 
netic transition of the Ising model itself (in the sense of the formation of 
macroscopically large "spongy"  domains of correlated spins). These con- 
siderations lend further support for the idea that a lattice-gas model (with 
internal degrees of freedom) may not be inappropriate for calculation of the 
properties of both liquid water and its condensation from the vapor. 

Ideally, one hopes to avoid the use of a lattice model. Since the modifica- 
tion of conventional gelation theory (given in Ref. 2) for treatment of cases 
involving reversible bonding so easily provides an interpretation of the 
condensation of water vapor, one would perhaps be tempted to try to pursue 
this approach further into the liquid range. Unfortunately, however, three 
complications ensue. First, the modified gelation theory itself required 
introduction of a (Flory-Huggins 2) lattice as a device to account for the 
effects of intermolecular repulsions (just as in a lattice gas). With allowance 
only for attractive interactions modified gelation theory yielded condensation 
in the form of total system collapse and provided no termination of the 
liquid-vapor equilibrium curve at a critical point. Second, allowance for 

2 See Ref. 5. The DiMarzio-Gibbs (6~ modification was used in Refs. 2 and 4. 
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ring closures (even at random) is very difficult to achieve in the context of 
gelation theory. Without allowance for these one has an unrealistic type of 
" g e l "  model for a liquid (i.e., a Cayley tree cannot be contained in space). 
Third, various summations arising in gelation theory are divergent on the 
liquid side of the vapor-liquid transition (just as in the case of the closely 
related Mayer (7~ cluster integral theory for simpler substances). This third 
complication is closely related to the second. 

Accordingly, we here invoke at the outset full use of  an Ising lattice, 
purely as a computational device. A body-centered cubic 3 lattice is chosen, 
because the tetrahedral angles formed by triads of sites in each of its two 
tetrahedral sublattices correspond nicely to the tetrahedral angles presumed to 
exist between adjacent hydrogen bonds. Although this choice of bcc lattice 
may thus be expected to introduce less computational error than a less 
natural choice, it should be borne in mind that over distances stretching out 
beyond second nearest neighbors neither the real vapor nor the real liquid 
possesses crystalline order. That  is, although the angles between adjacent 
hydrogen bonds may be nearly tetrahedral, the rotation around these H bonds 
effectively destroys longer range spatial order of the crystalline type. 

Indeed, the calculations presented here show, even more clearly than 
those performed with the Lee-Yang lattice-gas model for a monatomic liquid 
as argued in Ref. 4, that the essence of the gas-liquid transition is not the 
appearance of  a short-range manifestation of that type of  order which a 
crystal possesses fully, but is rather the onset in long range of the type of 
ordering associated with gelation (aggregation to form randomly organized 
clusters, or " spongy"  domains, of macroscopic extent.) Thus the network 
which will be found to exist on the low-temperature side of the (gas-liquid) 
phase transition exhibited by this lattice model (described more fully in 
Section 2) will be seen to be random in the fullest sense permitted by the 
lattice. That  is, the network "domains"  will not only prove to be " spongy"  
(as in the monatomic case) but also will be seen to wander randomly over 
both sublattices. 

One may anticipate, therefore, that this model should display a liquid- 
solid transition in addition to the aforementioned gas-liquid transition. The 
liquid-solid transition would be characterized by assemblage of the molecules 
exclusively on one sublattice with the formation of ordered interconnected 
small rings and concomitant saturation of H-bonding capabilities. 

3 This lattice is especially useful, because it allows the possibility of some non-hydrogen- 
bonded nearest neighbors even for a molecule which is hydrogen-bonded to four 
nearest neighbors. That this lattice is useful for discussion of tetrahedrally coordinated 
molecules with nonbonded neighbors was pointed out by Gibbs and DiMarzio. (8~ It 
has been utilized in a discussion of water by Porosoff. ~9~ It has also been used in models 
of water by Bell and by Weres and Rice. a0~ 
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In Section 2 the details of the model are introduced and discussed. In 
Section 3 the mean (molecular) field approximation (MFA) to the model 
is invoked. There it is seen that, while there is a liquid-vapor coexistence 
curve with a corresponding critical point, there is no stable crystalline phase 
in this order of approximation. It is also seen that since the strong directional 
dependence of the forces in the model is only treated in an average way in 
the MFA, the thermodynamic properties calculated with this approximation 
are not sufficiently accurate to be identified with those of real water. In 
Section 4 the second and third virial coefficients are calculated exactly for 
the model. It is seen that for appropriate choices of the interaction parameters 
the second virial coefficient for water can be fitted very well. The agreement 
with the third virial coefficient is even worse than that obtained with more 
realistic continuum calculations. (lz~ The absence from all these calculations 
o f  any allowance for "coopera t ive"  H-bond interaction ~12) (three-body 
attractive potential term) is probably responsible for this disagreement with 
the third virial coefficient. 

The mean field approximation is known to correspond to the leading 
term in an expansion of the exact result in terms of the intermolecular 
potential. In a subsequent paper (13~ we shall show that dramatic improvement 
is obtained by incorporation of the next higher term in this expansion. 
Inclusion of this quadratic term in the potential is sufficient to give the 
experimentally observed density maximum (as a function of temperature) in 
the liquid phase. 

2. M O D E L  

We construct the model by dividing position space into cells each of 
which is a Wigner-Seitz cell of a body-centered cubic (bcc) lattice. Each 
tetrahedral sublattice of  this bcc lattice is isomorphic with a diamond lattice, 
the lattice corresponding to cubic ice (14~ (ice Ic). We assume that each cell 
may or may not be occupied by one water molecule. The center of mass of 
the water molecule in an occupied cell is assumed to reside at the correspond- 
ing lattice site at the center of  the cell. A water molecule in an occupied cell 
is assumed to have any one of the 12 distinct orientations each of which 
points both of its OH groups and both of its lone pairs of electrons toward 
the nearest vertices of  one of  the tetrahedral sublattices (see Fig. 1). 

For  simplicity we restrict this discussion to the case in which only 
nearest neighbors interact, although this restriction is not required in principle. 
We assume that two nearest neighbors form a hydrogen bond (H bond) if 
their relative orientations are appropriate, i.e., one OH group of one pointing 
toward a lone pair of electrons of  the other (see Fig. 1). If their relative 
orientations do not permit H bonding, the molecules are assumed to interact 
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Fig. 1. (a) Lattice site and nearest  ne ighbors  for bcc lattice. The two possible orientat ions 
a = + 1 of  a te t rahedron are shown.  Solid lines denote the a = + 1 te t rahedron,  while 
dashed lines indicate the a = - 1 te t rahedron.  (b) The different possible orientat ions of  
a water molecule with respect to a given tetrahedron (a = + 1) with their label /3. (c) 
Examples of the three types of interactions involved. The interaction is E for the relative 
orientation that permits H bonding, E1 for relative orientations in which rotation of a 
single member of the pair will permit H bonding, and E2 for relative orientations that 
require rotation of both members of the pair to permit H bonding. 

more  weakly. We find it convenient to allow this non -H-bond  interaction 
to depend on the possibility that  the pair can be readjusted to an orientation 
favorable to H bonding by rotat ion o f  just one of  the molecules of  the pair. 
We assign a repulsive (or less attractive) interaction to those orientations 
tha t  require rotat ion of  both  members  o f  the pair for readjustment to an 
H-bonded  configuration. This results in an effective repulsion between the 
two ice Ic sublattices. This repulsion seems required to account  for the fact 
that  ice VIII ,  which is composed of  two interpenetrating ice Ic sublattices 
(bcc), has a larger nearest-neighbor distance than ice Ic and requires the 
application o f  high pressures for its formation.  
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These arguments imply a model Hamiltonian of the form 

H - /xN = K.E. + ~ (U lnt - / z ) n , ( R )  + �89 ~ V,r - R')n,(R)n,,(R') 
R,~ R~R' 

(I) 

where R labels the lattice site; c~ labels each of the 12 orientations of the 
water molecule; n.(R), which possesses only the values zero or one, is the 
number of moleculcs at lattice site R in orientation ~; the "one-body poten- 
tiM" U int is assumed to consist of an "internal kinetic encrgy" 4 (of rotation, 
vibration, etc.); /z is the chemical potential; V~.,(R - R') is the potential 
energy associated with thc two-body interaction between molecules in orien- 
tations c~ and cd separated by the distance vector R - R'. 

The variables n~(R) are constrained by the condition 

n~(R) ~< 1 (2) 
c~ 

That  is, multiple occupation of a lattice site (cell) is forbidden. 
The potential energy is such that for a nearest-neighbor separation 

- E if % d correspond to orientations which permit H 
bonding 

V~,(S) = - q  if rotation of a single molecule permits H bonding (3) 
- ~2 if rotations of  both members of  the pair are neces- 

sary to permit H borrding 

Vis assumed to vanish at separations other than nearest-neighbor separations. 
The explicit form of the potential matrix is given in Appendix A. The param- 
eters E, q ,  and % are kept adjustable, but we expect Jell and IE2[ to be of  
order 0.5 kcal/mole and E of  order 2-6 kcal/mole. In Section 4 we shall see 
that a choice of  q = e2 = 7.2 x 10 -~ kcal/mole and E = 4.65 kcal/mole 
gives the correct critical temperature for water in the MFA. 

The somewhat similar model considered by Bell (z~ also employs three 
parameters:  (1) an H-bond energy which is identical to ours, (2) a non-H- 
bonded energy which in this model corresponds to setting ~2 = q ,  and (3) 
a three-body repulsive energy assigned to configurations of  three molecules 
in which two molecules on different sublattices share a common nearest 
neighbor. Bell's repulsive energy was introduced, as was our e2, to favor 
local occupation of a single ice Ic sublattice and to provide a density maximum 
in the results. ~ The attractive "cooperat ive H - b o n d "  three-body energy, 

4 Actually, to be more correct, this energy should be treated as an internal free energy 
of a water molecule. 
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which has been thought to be important in water, (12) is neglected in both 
Bell's treatment and ours. 

We are interested in the grand partition function 

E(#,/z) = exp W(/3,/z) 

= Tr exp {-/3[ ~ (U i"t - ~)n~l(R1) + �89 ~ V~I~2(R ~ - R2) 
Rz,az Rz =/= R2 

• n~l(R1)n~z(R2)]} (4) 

where ~ = /z + (1//3) In(re/A3), vc is the volume of the unit cell, and h = 
([3h2/2mTr) ~/z is the thermal wavelength (/3 and m have their usual meanings). 
The factor h arises via treatment of the translational kinetic energy and 
assures that the translational kinetic energy is always 3kT  per molecule. 
The symbol Tr denotes a sum over all allowed states of the system, i.e., over 
all the sets of values of the variables n~(R) that are consistent with (2). 

Considering the similarity of our model to the ordinary lattice-gas 
model, we expect a system described by Hamiltonian (1) to exhibit a second- 
order phase transition at some critical temperature To. At temperatures 
below Tc the system should be separated into two phases of different densities, 
the lower density phase being identified with the vapor and the higher density 
phase with the liquid. 

p!T: a 
r2 

T 2 TI 

r~ 

b 

TI 

V 

Fig. 2. (a) Typical P -  Vphase diagram for a simple substance which contracts on freezing. 
(b) Expected P -  V phase diagram for the lattice model. The coexistence curve should show 
a volume minimum (density maximum) similar to the corresponding minimum (maxi- 
mum) at constant pressure. The solid side of the coexistence curve and all isotherms in 
the solid phase would lie on a single vertical straight line when the lattice size is kept fixed. 
The density of this solid phase would be smaller than that  of the liquid, since the solid 
(ice Ie) only fills half the bcc lattice. 
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However, the additional structure of the model suggests the existence of 
a third phase under appropriate conditions of temperature and pressure. 
Since the ice Ic lattice is a sublattice of the bcc lattice, we expect the presence 
of a transition to ice Ic, this configuration being favored energetically. In 
more formal terms, we may state this as the recognition that our model 
Hamiltonian has two breakable symmetries. One is a kind of"par t ic le-hole"  
symmetry, the breaking o f  which is usually associated with the vapor-liquid 
transition. The other is the translational symmetry of the bcc lattice, which 
is broken by the transition to ice Ic (either tetrahedral sublattice is of lower 
symmetry than the whole bcc lattice). These considerations lead to the 
expectation that this model should give rise to a phase diagram similar to that 
depicted in Fig. 2. 

3. M E A N  F IELD A P P R O X I M A T I O N  

In this section we explore the thermodynamic consequences of the MFA. 
This approximation is best motivated by consideration of the particular 
situation in which the two-body potential V vanishes. It is easy to show that 
for V -- 0 the thermodynamic potential is given by 

Wo(fl, ~) -- No ln{1 + lZZexp [fl(U int - t0]} (5) 

where Z = vc/h 3 and No is the number of lattice sites: The average density 
of particles per lattice site is obtained by differentiation: 

(N)o ~ (Wo_~ o,/~)) 12Zexp [fl(U~nt - tz)] (6) 
n = ~ = ~fl/z -- 1 + 12Z exp [/3(Uint - /z) ]  

The mean field approximation to the more genera! case which allows for 
interaction is obtained by making the following replacement in (6): 

Ui~t---~ irJ ~"t + ~ V~,(R - R')(n~,(R')) = U ~"t + (1/12) ~ V~,(R - R')n 

(7) 

That is, we assume that the effective energy experienced by a particular 
molecule is just its intrinsic energy plus its average potential energy. It is easy 
to verify that the sum over R' and ~' in (7) is independent of c~ and R. Thus 
the generalization of (7) becomes 

12Zexp [ - - f l ( e  int  - -  ~ + Vn)] 
n = 1 + 12Zexp [ - f l ( U l ~ t - p ,  + Vn)] (8) 

where 

V =  (1/144) ~ V,~,(R) = - 5 ~ -  2 ~ 2 - E  
ff,~"R 



166 Paul D. Fleming III and Jul ian H. Gibbs 

We can calculate the isothermal compressibility from Eq. (8), since 

\~3PJr = ~ r = 1 + n(1 - n)flF (9) 

(We have used the unit cell volume vc as our unit of volume.) We obtain the 
critical temperature in this approximation as the highest temperature at 
which the compressibility diverges. I t  is seen that this occurs at 

nc = �89 and kTc = - � 8 8  = �88 + �88 + �89 (10) 

I f  we choose q = E2 = 7.2 • 10 -2 kcal/mole (36~ (this is the value of 
used in the Lennard-Jones formula applied to neon, which is isoelectronic 
with water), then we obtain the correct critical temperature, Tc = 647~ 
for water if we choose E = 4.65 kcal/mole (2336~ The important point 
here is that, with the simplest approximation to the model, we fit Tc with a 
reasonable value for the hydrogen bond energy. According to the Ben-Naim- 
Stillinger potential, Cm the "ful ly formed hydrogen bond configuration" 
corresponds to a potential energy of 6.5 kcal/mole (3270~ 

I f  we assume that the nearest-neighbor distance is a linear function of 
the temperature, we obtain a value of 0.688 g/cm 3 for the critical density pc, 
a value of 783 arm for the critical pressure Pc, and a value of 0.386 for the 
critical ratio Zc = Pcpcvdnc. These values are to be compared with experi- 
mental values pc - -0 .325  g/cm a, P~ = 218 atm, and Zc = 0.230. ~5~ The 
discrepancies in the cases of the critical density and pressure are serious. 
Thus the M F A  calculation only serves to demonstrate the reasonableness of  
the choice of  important energy values required to relate the model to real 
water. 

It  is easily seen that the M F A  is a poor  approximation to the model 
because Eqs. (8)-(10) contain no reference to the details of the interaction 
matrix V,,,. Equation (8) shows that M F A  reduces the theory to the status 
of a single-parameter theory. The same results could have been obtained 
from an ordinary lattice gas with a Single interaction parameter. In a subse- 
quent paper aa~ we will consider the next simplest approximation to the model. 
There we show that better quantitative agreement with critical and other 
equilibrium properties can be obtained. 

Next we derive the equation of state which is thermodynamically con- 
sistent with (10). This equation is easily obtained by integrating (9). We 
have 

~(~P/On)r = [1/(1 - n)] + n/~V (11) 

This equation can be immediately integrated to give 

P3 = - ln (1  - n) + n2/3V (12) 
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Equation (12) is identical to the equation of state of the simple (argon 
type) ordinary lattice-gas model in MFA. Quantitative comparison with P VT 
properties of water would be pointless, since (12) is totally insensitive to 
the special nature of the interaction between water molecules. It is also 
obvious that the MFA will not yield a transition to the ice Ic phase, the 
mean potential in (7) being linear in the density. 

In order to obtain properties of the model of sufficient accuracy to 
warrant comparison with water, we must employ an approximation which is 
more sensitive to the dependence of the interaction potential on the relative 
orientations of neighboring molecules. The approximation treated in a 
subsequent paper (13~ is such an approximation. It yields a correction to (12) 
which is of the order of the potential squared. This second-order approxima- 
tion (SOA) proves to be strongly sensitive to the details of the interaction. 

4. V I R I A L  C O E F F I C I E N T S  

The calculation of the second and third virial coefficients is facilitated 
by recognition that the "kinematic"  elimination of multiple occupation of a 
lattice site is just a convenient method for treatment of the "dynamic"  
effects of the hard-core repulsion of two water molecules. It is well known (16) 
that lattice-gas models with restricted site occupation are isomorphic with 
"hard-core lattice-gas" models in which it is assumed that the intermolecular 
potential is infinite at zero separation (i.e., two molecules on the same site). 
For the model the statement is that 

V~,(R - R') = ~ if R = R' (13) 

The virial coefficients can then be obtained by conventional methods, (7'11~ 
in which integrations over phase space are replaced by sums over lattice 
sites and orientations. The second virial coefficient is then simply given by 

B2 = - �89 ~ f (R)  (14) 
R 

where 

f (R)  = (1/12 2) ,,~, {exp [-/3V~,(R)] - 1} 

We assume that the potential satisfies (13) at R = 0 and coincides with the 
potential defined in the appendix when R is a nearest-neighbor vector. This 
enables us to rewrite (14) as 

= �89 - �89 f ( s )  (15) 
6 

The leading term, �89 is easily verified to be the coefficient of the quadratic 
term in the expansion of - ln(1 - n) in powers of n. 
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By direct calculation with our interaction potential we obtain 

B2 = �89 - �89 B'I - 1) + 2(e~2 - 1) + e eE  - 1] 

= 9 _ S2eB~ 1 _ e ~ 2  _ � 8 9  (16) 

In order to compare this expression with experimental measurements in 
water, we must express it in the proper units. The coefficient in units of 
volume per mole is just N v c  times (16), N being Avogadro's number, vc is 
calculated with the assumption that the nearest-neighbor distance is a linear 
function of the temperature. The correct nearest-neighbor distance is easily 
obtained from X-ray measurements of Narten e t  a l .  ~17) 

In Fig. 3 the calculated coefficient is plotted versus temperature for 
several different values of the energy parameters. These are compared with 
an empirical formula which is known to fit experiments by Keyes. (18) As we 
see, the agreement is excellent and is rather insensitive to E~ and e2. However, 
comparison with experimental points definitely suggests a value of the 
hydrogen bond energy of E ___ 2.88 kcal/mole. This should be compared 
with the "spectroscopic" value of E ~ 2.5 kcal/mole. 

- IO0 

B ( T )  

- 2 0 0  

- 3 0 0  

-350 I I 
400 500 600  700  

Fig. 3. Second virial coefficient B(T) for  water. The solid line is a plot of  an  empirical 
fo rmula  known  to fit Keyes '(18~ experiments.  The points  are calculated f rom the model  
using the following values of the parameters  (in kcal/mole):  ( + )  E = 2.89, ~1 = 0.269, 
~2 = --0.942; ( � 9  E = 2.87, ~ = 0.350, ,2 = --0.961; and ( x )  E = 2.89, E1 = 0.060, 
c2 = -0 .098 .  
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In a similar manner  we calculate the third virial coefficient. This coef- 
ficient is given by 

Ba = (1/3No)(1/123) ~ .  {exp [-/3V~l~(R1 - R2)] - 1} 
R I R 2 R 3  

x {exp [-/~V~2~(R 2 - R3)] - l}{exp [-/~V~I~(R1 - R3)] - 1} (17) 

where No is the number  o f  lattice sites. 

B3 = �89 + 12 .3 ~" {exp [-pV,~2,,~,(fi)] - 1}{exp [ - ,SV, u,~=(g)] - 1} 
,5 

- ( 3 . 1 2 )  -3 ~ Ss,+s=+6~,o{exp [ - /TV,  u<~=(50] - 1} 
818383 
~1~2~3 

x {exp [-~V~2~a(82) ] - 1}{exp [-~V~l~a(Sa) ] - 1} (18) 

] 'he  third term vanishes for a bcc lattice, it being impossible to form a triangle 
with three-nearest neighbor vectors. Thus, using the explicit form for the 
potential, we obtain 

Ba = �89 + (~e ~q + �89 ~ - 2) 2 + (e ~<, + e ~ - 2) ~ (19) 
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t I 
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Fig. 4. Third virial coefficient C(T) for water. The solid line represents an empirical 
formula which fits the data of Kell et al. ~19~ The values of the coefficient calculated from 
the model are shown for the same values of the energy parameters as in Fig. 3. Values 
of the coefficient obtained by numerical integration of the Stockmayer C2~ and Ben-Naim- 
Stillinger ~1~ potentials are also shown. 
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For comparison with experimental results (19) must be multiplied by 
(Nvc) 2. The calculated coefficient is plotted versus temperature in Fig. 4 for the 
same values of the parameters as in Fig. 3. This calculation is compared with 
an empirical formula which fits the third virial coefficient measurements of 
Kell et  al.  C~9~ It is also compared with the third virial coefficient obtained by 
direct numerical integration of the Ben-Naim-Stillinger potential ( ~  and the 
Stockmayer <2~ potential. 

If we had employed Bell's three-body repulsive energy as a third pa- 
rameter instead of our E~, we would have obtained even worse agreement 
with the third virial coefficient. ~2~ Bell's model would give its best agreement 
when its three-body energy (not an energy associated with a triplet held 
together by two H bonds) is taken as attractive. It is more likely, however, 
that the dominant contribution to the actual third virial coefficient in water 
is a "cooperative H-bond"  three-body energy. (12~ 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

We have introduced a model for water which is a generalization of the 
lattice-gas model in that it includes the degrees of freedom associated with 
molecular orientation. We have suggested that this model should exhibit at 
least two phase transitions, these two corresponding to melting and boiling. 
The first nontrivial self-consistent approximation (MFA) has been examined 
and shown to be in agreement with the correct critical temperature for water 
(with a reasonable choice for the interaction parameters) but in disagreement 
with the critical density and pressure. 

In order to test more severely the model itself (rather than an approxima- 
tion to it), we have exactly calculated its second and third virial coefficients. 
Since it is well known that the third coefficient is very sensitive to a possible 
three-body correction to the otherwise pairwise additive potential, (11'12~ the 
disagreement with it obtained with no three-body correction should not be 
taken too seriously. If  Bell's (1~ three-body interaction is employed instead of 
our distinct E2, the agreement with the third virial coefficient is worsened 
unless this interaction is made attractive. (~1~ Bell ~~ has shown, however, 
that in his model this interaction must be repulsive if a density maximum 
and compressibility minimum are to be obtained. With Bell's model and 
ours (as well as those of Stockmayer and of Ben-Naim and Stillinger) the 
disagreement with the third virial coefficient is almost certainly related to 
neglect of the "cooperative H-bond interaction"(a2~ of three water molecules. 

Although the three-body interaction may dominate the third virial 
coefficient, explicit incorporation of it into treatment of thermodynamic 
properties in the liquid phase may well not be necessary. Most interpretations 
of  liquid water, including the "ge l "  model proposed in Refs. 2 and 4, suggest 
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a high degree of H bonding in the liquid. In such a case virtually every H-bond 
energy is subject to the "coopera t ive"  three-body enhancement. Therefore 
the principal effect of this cooperativity may be accounted for by choice of an 
average energy per H-bonded pair which is larger than that determined for 
isolated pairs in the vapor by fitting to the second virial coefficient. 

In a subsequent paper ~3> we will establish a formalism from which a 
series of self-consistent approximations (MFA being the first and simplest) 
can be generated. The first improvement of MFA will be seen to be sufficient 
to give a density maximum for the liquid in the correct temperature range. 
Other thermodynamic properties of the liquid are brought into significantly 
better agreement with experimental results by this less drastic approximation. 

A P P E N D I X .  I N T E R A C T I O N  P O T E N T I A L  M A T R I X  

In this appendix we exhibit the explicit form of the interaction matrix. 
The index a (=  1-12) can be replaced by the pair of indices a, fi (a = +  1, 
/3 = 1-6). The index a labels the two sets of tetrahedrally disposed nearest- 
neighbors and fi labels the six elements of the point group of a water molecule 
with respect to the ath sublattice. Clearly this assignment is not unique; 
we use the assignment defined in Fig. 1. The potential breaks into three parts, 

VaBa,e,(R) = V~ + 2 VaBa,B,(R) + V~Ba,B,(R) (A.1) 

V~ is the isotropic "van  der Waals" interaction. Iffi~ ~ is the yth (~, = 1-4) 
nearest neighbor of the ath type, then 

V~ ~) = -E l  (A.2) 

and vanishes for any other separation. 
V 1 is the hydrogen bonding potential. If we use the same coordinate 

system to label the nearest neighbors at each site, then it is clear that two 
hydrogen-bonded neighbors must have values of a of opposite sign. There 
V 1 must be of the form 

1 a "  V~B~,~,(8 ~ ) = V~B,(Sr ~) 8~,, 8a=~, = V~,B,~B(--8~" ) (A.3) 

By consulting Fig. I, we can explicitly enumerate this matrix 

v~B.(811) = v ~ , ( 8 ;  ~) = 

"1 1 

1 1 

1 1 

0 0 

0 0 

-0 0 

1 0 0 0 7  

1 0 0 0 

1 0 0 0 
( E -  ~1) 

0 1 1 1 

0 1 1 1 

0 1 1 1 

(A.4a) 
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v~,(5~?)  = v~ , , ( s r  ~) = 

v~, , ( s~  ~) = v ~ , , ( s ;  1) = 

v ~ . ( s J )  = v ~ , ( s ;  9 = 

-1 

0 

0 

0 

1 

.1 

-1 

0 

1 

0 

1 

.0 

[; 

0 0 0 1 

1 1 1 0 

1 1 1 0 

1 1 1 0 

0 0 0 1 

0 0 0 1 

0 1 0 1 

1 0 I 0 

0 1 0 1 

1 0 1 0 

0 1 0 1 

1 0 1 0 

1 0 0 0 

1 0 0 0 

0 1 1 1 

0 1 1 1 

1 0 0 0 

. 

0 

0 
( ~ -  ~1) 

0 

1 

1. 

O" 

1 

0 
( E -  q)  

1 

0 

1_ 

The Fourier transform of V 1 is 

V~e=,~,(k) = ~ [exp ( - i k . 8 ~ ) ]  V~a,B,(8~ ~) = V~e,(k ) 3~_~, 
a ~ 

where 

(A.4b) 

(A.4c) 

(A.4d) 

(A.5) 

V~,,(k) = ~ [exp ( -  ik. 8a)] VJ,,(8~ ~) 
7 

Since 3y a = -3~-=, we see that 

V~,,(k) = (VA,~(k)) * = VA,~(-k) (A.6) 

Finally V ~ takes into account the repulsion (14> between sublattices. This part 
also only involves neighbors with different values of a. However, since they 
must be in totally unfavorable positions for hydrogen bonding, we must 
have 

V 2  (~a"'t ~,,'B'wr , = (e2 - q)3a,~,, 3~_~, (A.7) 

I f  V 2 is to correspond to an effective repulsion, we must have E2 - q < 0. 

A C K N O W L E D G M E N T S  

We would like to thank Dr. Claude Cohen and Jeff Gordon for helpful 
discussions and reading of the manuscript. 



An Adaptation of the Lattice Gas to the Water  Problem 173 

R E F E R E N C E S  

1. T. D. Lee and C. N. Yang, Phys. Rev. 87:410 (1952). 
2. J. H. Gibbs, C. Cohen, P. D. Fleming, and H. Porosoff, J. SoL Chem. 2:277 (1973). 
3. W. H. Stockmayer, J. Chem. Phys. 11:45 (1943). 
4. C. Cohen, J. H. Gibbs, and P. D. Fleming, J. Chem. Phys. 59:5511 (1973). 
5. P. J. Flory, J. Chem. Phys. 10:51 (1942); M. L. Huggins, J. Phys. Chem. 46:15l 

(1942); Ann. N. Y. Acad. Sci. 43:1 (1942); J. Am. Chem. Soc. 64:1712 (1942). 
6. E. A. DiMarzio and J. H. Gibbs, J. Chem. Phys. 28:807 (1958). 
7. J. E. Mayer and M. G. Mayer, Statistical Mechanics, John Wiley, New Yorl< 

(1940), Chapters 13, 14. 
8. J. H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 28:373 (1958). 
9. H. Porosoff, Ph.D. Thesis, Brown University (1970). 

10. G. M. Bell, J. Phys. C; Solid State Phys. 5:889 (1972); O. Weres and S. A. Rice, J. 
Am. Chem. Soc. 94:8983 (1972). 

11. A. Ben-Naim and F. Stillinger, in Water and Aqueous Solutions, R. A. Horne (edo), 
Wiley-Interscience, New York (1972), p. 295. 

12. H. S. Frank and W.-Y. Wen, Disc. Faraday Soc. 24:133 (1957). 
13. Paul D. Fleming and J. H. Gibbs, J. Stat. Phys. 10:351 (1974). 
14. O. Eisenberg and W. Kauzmann, The Structure and Properties of Water, Oxford 

University Press, New York (1969), Chapter 3. 
15. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford, 

1971), Chapter 5. 
16. J. L. Lebowitz, G. Stell, and S. Baer, J. Math. Phys. 6:1282 (1965); and G. Stell, 

J. L. Lebowitz, S. Baer, and W. Thenmann, J. Math. Phys. 7:1532 (1966). 
17. A. H. Narten, M. D. Denford, and H. A. Levy, Disc. Faraday Soc. 43:97 (1967). 
18. F. G. Keyes, Trans. Am. Soc. Mech. Eng. 78:555 (1958). 
19. G. S. Kell, G. E. McLaurin, and E. Whalley, J. Chem. Phys. 48:3805 (1968). 
20. W. H. Stockmayer, J. Chem. Phys. 9:398 (1941). 
21. J. Gordon, unpublished results. 


